BN

Phân tích đa thức thành nhân tử:

\(\dfrac{1}{x-y}-\dfrac{1}{x+y}+\dfrac{2x}{x^2-y^2}\)

H24
2 tháng 1 2022 lúc 16:13

\(\dfrac{1}{x-y}-\dfrac{1}{x+y}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}\\ \dfrac{x+y}{\left(x-y\right)\left(x+y\right)}-\dfrac{x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}\\ \dfrac{x+y-x+y+2x}{\left(x-y\right)\left(x+y\right)}\\ \dfrac{2x+2y}{\left(x-y\right)\left(x+y\right)}\\ \dfrac{2}{x-y}\)

Bình luận (1)
KS
2 tháng 1 2022 lúc 16:13

\(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2-y^2}=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}+\dfrac{x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}=\dfrac{4x}{\left(x-y\right)\left(x+y\right)}\)

Bình luận (1)
KS
2 tháng 1 2022 lúc 16:17

\(\dfrac{1}{x-y}-\dfrac{1}{x+y}+\dfrac{2x}{x^2-y^2}\\ =\dfrac{x+y}{x-y}-\dfrac{x-y}{x+y}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{2x+2y}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{2}{x-y}\)

Bình luận (0)