Bạn thấy ảnh ko ạ ?
* Nguồn : Lazi *
Trả lời:
\(\left(ab-1\right)^2+\left(a+b\right)^2\)
\(=a^2b^2-2ab+1+a^2+2ab+b^2\)
\(=a^2b^2+1+a^2+b^2\)
\(=\left(a^2b^2+a^2\right)+\left(b^2+1\right)\)
\(=a^2\left(b^2+1\right)+\left(b^2+1\right)\)
\(=\left(b^2+1\right)\left(a^1+1\right)\)
\(\left(ab-1\right)^2+\left(ab+1\right)^2\)
\(=a^2b^2-2ab+1+a^2+2ab+b^2\)
\(=a^2b^2+a^2+b^2+1\)
\(=a^2\left(b^2+1\right)+\left(b^2+1\right)\)
\(=\left(a^2+1\right)\left(b^2+1\right)\)
phân tích đa thức thành nhân tử:
=(ab-1)2+(a+b)2
= (a^2+1)(b^2+1)
( ab - 1 )2 + ( a + b )2
= a2b2 - 2ab + 1 + a2 + 2ab + b2
= a2 + b2 + a2b2 + 1
= ( a2b2 + b2 ) + ( a2 + 1 )
= b2( a2 + 1 ) + ( a2 + 1 )
= ( a2 + 1 )( b2 + 1 )