TH

Phân tích đa thức thành nhân tử :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)

\(=x^3+3.x^2.y+3.x.y^2+y^3+z^3-x^3-y^3-z^3+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)

\(=3.x^2.y+3.x.y^2+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)

\(=3xy.\left(x+y\right)+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)

Cô ơi, em phải làm tiếp sao ạ ? cô ơi, cô giải chi tiết giúp em nhe cô, em cám ơn cô nhiều ạ, hihi ^^

LH
31 tháng 10 2016 lúc 18:18

Làm như vầy là sai hướng rồi.

Tham khảo :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)

\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)

\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
HN
Xem chi tiết
KM
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
TK
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết