Đặt n^2 + 2n + 1= a, ta được:
(a - 1)(a + 1) +1= a^2 - 1 + 1= a^2=(n^2 + 2n +1)^2
=(n + 1)^4
Đặt n^2 + 2n + 1= a, ta được:
(a - 1)(a + 1) +1= a^2 - 1 + 1= a^2=(n^2 + 2n +1)^2
=(n + 1)^4
a) Phân tích đa thức thành nhân tử: x(x+2)(x2+2x+2)+1
b) Rút gọn biểu thức: A = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{[n\left(n+1\right)]^2}\)
Phân tích thành nhân tử
A) \(15x^ny^{2n}-3x^{n+1}\left(-y\right)^{2n}\)
B) \(4x^{2n}y^{n-1}+2\left(-x\right)^{2n+1}y^n\)
1.Phân tích đa thức thành nhân tử:
\(4x^2-2y^2+1999\left(2x-y\right)^2\)
2.Chứng minh biểu thức \(P=2x^2+y^2-4x-4y+10\)luôn nhận giá trị dương với mọi biến x,y
3.Chứng minh giá trị của biểu thức \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)luôn chia hết cho 5 với mọi số nguyên n
1/ Phân tích đa thức thành nhân tử :
a) \(49-x^2+2xy-y^2\)
b) \(0,125\left(a+2\right)^3-1\)
c) \(\frac{1}{36}a^2-\frac{1}{4}b^2\)
2/ Chứng minh rằng với mọi n thuộc Z thì :
\(\left(n^4+2n^3-n^2-2n\right)⋮24\)
Phân tích đa thức thành nhân tử :
\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)
Thầy tớ có cho gợi ý ạ :
Có dạng tổng quát của mỗi thừa số của tử số và mẫu số : \(n^4+\frac{1}{4}\)
Phân tích thành : \(n^4+\frac{1}{4}\)
\(=\left(n^2\right)^2+2n^2.\frac{1}{2}+\frac{1}{4}-n^2\)
\(=\left(n^2+\frac{1}{2}\right)^2-n^2\)
\(=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)
P/s : Giải giúp tớ nhé :33
Phân tích đa thức thành nhân tử
\(mn\left(x^2+y^2\right)+xy\left(m^2+n^2\right)\)
Tính phân tích đa thức thành nhân tử
\(\left(4x-5\right)\left(4x^2+4x.5-5^2\right)\left(16x+1\right)+64\)
Phân tích đa thức thành nhân tử: \(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
phân tích đa thức thành nhân tử\(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)