HK

phân tích đa thức thành nhân tử bằng cách thêm hoặc bớt một số hạng tử

a) x5+x+1

b) x7+x2+1

DK
29 tháng 7 2016 lúc 8:13

a) \(x^5+x+1=x^5+x^2-x^2+x+1\)

\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

b) \(x^7+x^2+1=x^7+x^2-x+x+1\)

\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5+x^2+1-x^4-x\right)\)

(Nếu đúng thì k cho mìk với nhé!)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
PB
Xem chi tiết
BH
Xem chi tiết
PB
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
LA
Xem chi tiết