a) x( x + 2 )( x + 3 )( x + 5 ) + 5
= [ x( x + 5 ) ][ ( x + 2 )( x + 3 ) ] + 5
= ( x2 + 5x )( x2 + 5x + 6 ) + 5 (1)
Đặt t = x2 + 5x
(1) <=> t( t + 6 ) + 5
= t2 + 6t + 5
= t2 + t + 5t + 5
= t( t + 1 ) + 5( t + 1 )
= ( t + 1 )( t + 5 )
= ( x2 + 5x + 1 )( x2 + 5x + 5 )
b) 6x2 - 5xy + y2 = 6x2 - 3xy - 2xy + y2 = 3x( 2x - y ) - y( 2x - y ) = ( 2x - y )( 3x - y )
a,\(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+5\)
\(=x\left(x+5\right)\left(x+2\right)\left(x+3\right)+5\)
\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+5\)(*)
Đặt \(a=x^2+5x\)ta đc:
(*)=\(a\left(a+6\right)+5\)
\(=a^2+6a+5\)
\(=a^2+a+5a+5\)
\(=a\left(a+1\right)+5\left(a+1\right)\)
\(=\left(a+5\right)\left(a+1\right)\)
\(=\left(x^2+5x+5\right)\left(x^2+5x+1\right)\)
b,\(6x^2-3xy-2xy+y^2\)
\(=3x\left(2x-y\right)-y\left(2x-y\right)\)
\(=\left(3x-y\right)\left(2x-y\right)\)
a) \(x\left(x+2\right)\left(x+3\right)\left(x+5\right)+5\)
\(=\left[x\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]+5\)
\(=\left(x^2+5x\right)\left(x^2+5x+6\right)+5\)
\(=\left(x^2+5x\right)^2+6\left(x^2+5x\right)+5\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+5\right)\)
b) \(6x^2-5xy+y^2\)
\(=\left(6x^2-6xy\right)-\left(xy-y^2\right)\)
\(=6x\left(x-y\right)-y\left(x-y\right)\)
\(\left(x-y\right)\left(6x-y\right)\)