NC

Phân tích a^3+b^3+c^3-3abc thế từ đó suy ra điều kiện của a,b,c để a^3+b^3+c^3=3abc

LP
16 tháng 5 2023 lúc 19:56

\(a^3+b^3+c^3-3abc\) \(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ca-bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Vậy để \(a^3+b^3+c^3=3abc\) thì \(a+b+c=0\) hoặc \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
HB
Xem chi tiết
H24
Xem chi tiết
ML
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
SP
Xem chi tiết
OO
Xem chi tiết
DT
Xem chi tiết