2 chân đi trước, 3 chân đi sau
Bg
Ta có: P = 5 + 52 + 53 +...+559 + 560
=> 5P = 5.(5 + 52 + 53 +...+559 + 560)
=> 5P = 52 + 53 + 54 +...+560 + 561
=> 5P - P = 52 + 53 + 54 +...+560 + 561 - (5 + 52 + 53 +...+559 + 560)
=> 4P = 561 - 5
=> P = \(\frac{5^{61}-5}{4}\)
Vậy P = \(\frac{5^{61}-5}{4}\)
P = 5 + 52 + 53 + ... + 559 + 560
=> 5P = 5( 5 + 52 + 53 + ... + 559 + 560 )
= 52 + 53 + ... + 560 + 561
=> 4P = 5P - P
= 52 + 53 + ... + 560 + 561 - ( 5 + 52 + 53 + ... + 559 + 560 )
= 52 + 53 + ... + 560 + 561 - 5 - 52 - 53 - ... - 559 - 560
= 561 - 5
4P = 561 - 5 => P = \(\frac{5^{61}-5}{4}\)
5 + 52 + 53 + ...... + 559 + 560 = 5 + (52+53+....+559+560) Số số hạng của dãy 52+53+....+559+56052+53+....+559+560 là (560−52): 1+1=509(560-52): 1+1=509 Tổng 5+(52+53+....+559+560)5+(52+53+....+559+560) =5+(560+52)⋅509:2=5+155754=155759 |