Cho x,y,z và \(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{x+z}\)(giả thiết các phân số trên có nghĩa)
Tính giá trị của biểu thức \(P=\frac{2x+2y+2019z}{x+y-2020z}\)
cho cac so x,y,z va x+y+z khac 0 thoa man dieu kien
\(\frac{x+2y}{x+2y-z}+\frac{y+2z}{y+2z-x}+\frac{z+2x}{z+2x-+y}\)
tinh gt bieu thuc \(T=\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{z^2+x^2}{zx}\)
Tìm x,y,z trong các trường hợp :
a) 2x = 3y = 5z và | x - 2y | = 5
b) 5x = 2y ; 2x = 3z và xy = 90
c) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tìm x,y,z biết:
a) 2x=3y=5z và |x-2y|=5
b) 5x=2y, 2x=3z và xy=90
c) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tính: B=\(\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}\)khi x,y,z là các số thực khác 0 và\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)
\(a,\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(b,\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
\(c,\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)