Độ dài là min khi (nếu có thể) độ dài đó là 0.
Nhận thấy điều này xảy ra được vì (P) và (d) cắt nhau tại \(A\left(1;1\right)\) và \(B\) trùng với \(A\).
Giải:
\(!AB!=\sqrt{\left(x_a-x_b\right)^2+\left(y_a+y_b\right)^2}\)\(=\sqrt{\left(x_a-x_b\right)^2+\left(x_a^2-2x_b+1\right)^2}=D\)
Bài toán trở thành: tìm giá trị xa=a và xb=b sao cho D đạt GTNN
Hiển nhiên \(D\ge0\)đẳng thức xẩy ra khi \(\hept{\begin{cases}a-b=0\\a^2-2b+1=0\end{cases}}\)\(\left(b-1\right)^2=0\Rightarrow b=1\) Nghiệm duy nhất a=b=1
KL
A(1,1) trùng B(1,1)