YT

P  = \(\left(\dfrac{1-\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-3\sqrt{x}+2}\right):\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{1-\sqrt{x}}{x-2\sqrt{x}}\right)\)

a) Rút gọn P

b) Tính giá trị của P biết x = 6 - \(2\sqrt{5}\)

c) Tìm giá trị lớn nhất của \(\dfrac{P}{\sqrt{x}}\)

Mình đang cần gấp. Làm chi tiết giúp mình nhé.

NM
12 tháng 1 2022 lúc 23:44

\(a,P=\dfrac{-x+2\sqrt{x}-1+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}:\dfrac{2\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ P=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\\ \Rightarrow P=\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{5-\sqrt{5}}{5}\\ c,\dfrac{P}{\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}\le\dfrac{1}{0-1}=-1\)

Vậy \(\left(\dfrac{P}{\sqrt{x}}\right)_{max}=-1\Leftrightarrow x=0\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TN
Xem chi tiết
HM
Xem chi tiết
YT
Xem chi tiết
HM
Xem chi tiết
YT
Xem chi tiết
TT
Xem chi tiết
QM
Xem chi tiết
TL
Xem chi tiết