H24

P=  -3x^2 + 6x -  y^2+ 3y + 10 tìm GTLN của P

NN
25 tháng 10 2020 lúc 21:46

\(P=-3x^2+6x-y^2+3y+10\)

\(=-3x^2+6x-3-y^2+3y-\frac{9}{4}+\frac{61}{4}\)

\(=-3\left(x^2-2x+1\right)-\left(y^2-3y+\frac{9}{4}\right)+\frac{61}{4}\)

\(=-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-1\right)^2\le0\forall x\)

\(\left(y-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(y-\frac{3}{2}\right)^2\le0\forall y\)

\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2\le0\forall x,y\)

\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\le\frac{61}{4}\forall x,y\)

hay \(P\le\frac{61}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)

Vậy \(maxP=\frac{61}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
25 tháng 10 2020 lúc 21:56

P = -3x2 + 6x - y2 + 3y + 10

⇔ -P = 3x2 - 6x + y2 - 3y - 10

          = ( 3x2 - 6x + 3 ) + ( y2 - 3y + 9/4 ) - 61/4 

          = 3( x2 - 2x + 1 ) + ( y - 3/2 )2 - 61/4

          = 3( x - 1 )2 + ( y - 3/2 )2 - 61/4 ≥ -61/4 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 3/2

=> -P ≥ -61/4

=> P ≤ 61/4

=> MaxP = 61/4 ⇔ x = 1 ; y = 3/2

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KB
Xem chi tiết
KB
Xem chi tiết
KB
Xem chi tiết
TN
Xem chi tiết
TD
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
PQ
Xem chi tiết
AL
Xem chi tiết