Áp dụng t/c dtsbn:
\(a+b+c=\dfrac{c}{a+b+1}=\dfrac{a}{b+c+2}=\dfrac{b}{a+c-3}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{1}{2}\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=\dfrac{1}{2}\\2c=a+b+1\\2a=b+c+2\\2b=a+c-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c+1=3c\\a+b+c+2=3a\\a+b+c-3=3b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3c=\dfrac{3}{2}\\3a=\dfrac{5}{2}\\3b=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}\\a=\dfrac{5}{6}\\b=-\dfrac{5}{6}\end{matrix}\right.\)