Violympic toán 9

NP

\(n\ge3;a,b,c>0\)

CMR :

\(\dfrac{1}{a^n\left(b+c\right)}+\dfrac{1}{b^n\left(c+a\right)}+\dfrac{1}{c^n\left(a+b\right)}\ge\dfrac{3}{2}\)

Akai Haruma

HN
23 tháng 11 2018 lúc 0:57

Áp dụng BĐT holder cho n bộ 3 số:

\(\left(\sum\dfrac{b^nc^n}{b+c}\right)\left[\sum\left(b+c\right)\right]\left(1+1+1\right)..\left(1+1+1\right)\ge\left(ab+bc+ca\right)^n\)

\(\Leftrightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^n}{3^{n-2}.2.\left(a+b+c\right)}\ge\dfrac{3^{n-2}.3abc\left(a+b+c\right)}{3^{n-2}.2.\left(a+b+c\right)}=\dfrac{3}{2}\)

#Hint:(\(\left\{{}\begin{matrix}ab+bc+ca\ge3\\\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\end{matrix}\right.\))

BĐT holder thường dùng:

\(\left(a_1^m+a_2^m+...+a_k^m\right)\left(b_1^m+b_2^m+...+b_k^m\right)...\left(c_1^m+...+c_k^m\right)\ge\left(a_1b_1...c_1+a_2.b_2...c_2+...+a_k.b_k...c_k\right)^m\)

trong đó VT có m thừa số từ a đến c

Bình luận (0)
NP
20 tháng 11 2018 lúc 20:51

abc = 1 nưa nha

Bình luận (0)

Các câu hỏi tương tự
NY
Xem chi tiết
PP
Xem chi tiết
HT
Xem chi tiết
LT
Xem chi tiết
PA
Xem chi tiết
CN
Xem chi tiết
H24
Xem chi tiết
AX
Xem chi tiết
DP
Xem chi tiết