SX

N=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)

tính N<1

TV
30 tháng 4 2018 lúc 11:04

Ta có 

1/2^2<1/1.2

1/3^2<1/2.3

......

1/2009^2<1/2008.2009

1/2010^2<1/2009.2010

=>1/2^2+1/3^2+...+1/2010^2<1/1.2+1/2.3+....+1/2009.2010

=>N<1/1.2+1/2.3+....+1/2009.2010

=>N<1-1/2010

=>N<2009/2010<1

Vậy N<1

Bình luận (0)
NA
16 tháng 3 2019 lúc 21:34

\(N=\) \(\frac{1}{2^2}\) \(+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}+\frac{1}{2009.2010}\)

\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)

\(N< 1-\frac{1}{2010}\)       

\(N< \frac{2009}{2010}< 1\)

\(\Rightarrow N< 1\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
LM
Xem chi tiết
NU
Xem chi tiết
HN
Xem chi tiết
TD
Xem chi tiết
TM
Xem chi tiết
KI
Xem chi tiết
PA
Xem chi tiết
VV
Xem chi tiết