\(x^2+\dfrac{1}{x^2}=\left(x+\dfrac{1}{x}\right)^2-2\cdot x\cdot\dfrac{1}{x}=a^2-2\)
\(x^2+\dfrac{1}{x^2}=\left(x+\dfrac{1}{x}\right)^2-2\cdot x\cdot\dfrac{1}{x}=a^2-2\)
Nếu đề bài sai thì bảo mình 1 câu nha! Cám ơn các bn nhìu!!!
Rút gọn biểu thức: \(B=\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}:\dfrac{x-1}{x+\sqrt{x}+1}\)
1. cho biểu thức
A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
a, rút gọn
b, với giá trị nào của x thì A<-1
A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
a. tìm đkxđ và rút gọn A
b. với gtri nào của x thì \(\left|A\right|=A\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
CMR nếu x,y∈Z\(^+\) thì một trong hai BĐT sau là sai:
\(\dfrac{1}{xy}\ge\dfrac{1}{\sqrt{5}}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\) và \(\dfrac{1}{x\left(x+y\right)}\ge\dfrac{1}{\sqrt{5}}\left(\dfrac{1}{x^2}+\dfrac{1}{\left(x+y\right)^2}\right)\)
Rút gọn :
a)\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+....+\dfrac{1}{\left(x+10\right)\left(x+11\right)}B=\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
cho biểu thức
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a.rút gọn Q
b.tìm số nguyên x để Q có gtri nguyên
đáp an: a.Q=\(\dfrac{2}{x-1}\)
b.x=-1;x=0;x=2;x=3 thì Q\(\in Z\)
mk chỉ bt đáp án chứ ko biết cách giải
Cho biết các số x,y,z thỏa mãn :
x2+2y+1=0
y2+2z+1=0
z2+2x+1=0
Tính giá trị biểu thức:
a) A = x2020 + y2020+z2020
b) B=\(\dfrac{1}{x^{2022}}+\dfrac{1}{y^{2022}}+\dfrac{1}{z^{2022}}\)
1. cho phương trình :x2+5x+m-2=0( m là tham số)
a, giải phương trình khi m=-12
b, tìm m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{x}{x_1-1}+\dfrac{1}{x_2-1}=2\)