Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)
<=>\(\frac{ab+bc+ca}{abc}\ge a+b+c\)
Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Suy ra \(\frac{\left(a+b+c\right)^2}{3}.\frac{1}{abc}\ge a+b+c\)
Hay \(a+b+c\ge3abc\)(đpcm)
Dấu "=" xảy ra <=>a=b=c