+ Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a2 = (3k + 2).(3k + 2)
= (3k + 2).3k + 2.(3k + 2)
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a2 - 1 chia hết cho 6
+ Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a2 = (3k + 2).(3k + 2)
= (3k + 2).3k + 2.(3k + 2)
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a2 - 1 chia hết cho 6