(Ax+B)(Cx+D)=\(ACx^2+\left(BC-A\right)x-B=50x^2+25x-3\)
Như vậy: \(\hept{\begin{cases}AC=50\\BC-A=25\\B=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}A=5\\B=3\\C=10\end{cases}}\)Thay số vào P được P=1
(Ax+B)(Cx+D)=\(ACx^2+\left(BC-A\right)x-B=50x^2+25x-3\)
Như vậy: \(\hept{\begin{cases}AC=50\\BC-A=25\\B=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}A=5\\B=3\\C=10\end{cases}}\)Thay số vào P được P=1
Nếu 50x2 + 25x - 3 = (Ax + B)(Cx + D) và D = -1. Khi A ; B ; C là các số nguyên thì giá trị của biểu thức P = (\(\dfrac{C}{A}-B\)) . D2017 là ...
Nều 50x^2+25x-3=(Ax+B)(Cx+D) và D+-1. Khi A,B,C là các số nguyên thì giá trị biểu thức
P=(C/A-B)D^2017 là bao nhiêu
cho 50x2+25x-3=(Ax+B)(Cx+D)
tính \(\left(\frac{C}{A}-B\right)D^{2017}\) biết D= -1
Cho một biểu thức, biết biểu thức là:
\(\left[\left(a+b\right)^3+\left(c-d\right)^3-\left(a+c\right)^3-\left(b-d\right)^3\right]\left(mn\right)^2=63504.\)
Các số cần tìm cho, biết:
- TRC của 4 số a, b, c, d là 4,5. TRC của 2 số a và c là 5. a hơn c 2 đơn vị, d bằng \(\frac{1}{2}b\).
- TRC của 4 số a, b, m, n là 5. Biết \(\frac{m}{a+c}=0,7\), tổng của a và b là a + b, tổng của m và n là \(\left(a+b\right)\frac{10-1}{10+1}\).
a) Tìm a, b, c, d, m và n.
b) Nếu thêm p vào bên phải của biểu thức, biết \(p\ne0\)và ở giữa p có 16 số chẵn, nhưng các số chẵn ≈ 7 ; 8. Các số chẵn chia hết cho 5. Tính giá trị của biểu thức mới.
c) Tính:
\(am^2\left(5^3+abcd-\left(ab^2-cd^2\right)\right)+\left(\sqrt{\left(m+1\right)^{2c}}-\sqrt{\left(50c\right)^c\times2n}\right)..\)
d) Tính giá trị của X, biết rằng:
\(X=9ab-9cd+9mn+...+\frac{9mn}{8}.\)
Chứng minh rằng: \(X⋮45\)và giá trị của ... là số có tử số của số đó bé hơn tử số của số \(\frac{975}{4}\)là Y. Biết rằng:
\(Y=\frac{15-1}{15+1}\left(d^d-\frac{d}{m}\right)n\sqrt{c}.\)
Bài 1: Tìm giá trị nguyên của x để giá trị của các biểu thức sau cũng là số nguyên
\(\frac{4x^3-3x^3+2x}{x-3}\)
Bài 2: Rút gọn phân thức
\(\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\); \(\frac{2\left(x-4\right)}{x^2+x-20}\)
1)Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội của 24
2) CMR nếu:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\left(1\right)\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(c^2+a^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
3) Cho độ dài ba cạnh a,b,c của một tam giác. CMR:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)
a) CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-zx\right)}\)với x khác y , xyz khác 0 , yz khác 1 , xz khác 1 m thì xy+xz+yz= xyz(x+y+z)
:b) Cho a, b , c là các số thực khác 0 và thỏa mãn :
\(\hept{\begin{cases}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2017}+b^{2017}+c^{2017}=1\end{cases}}\)
Tính giá trị của biểu thức P= \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
Cho a,b,c là các số nguyên khác nhau đôi một . Chứng minh rằng biểu thức sau có giá trị là một số nguyên :
\(P=\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
1) Cho biểu thức \(C=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)
a) Rút gọn biểu thức C
b) Tìm giá trị nguyên của x để giá trị của biểu thức C là số nguyên
2) Cho biễu thức \(D=\frac{x^3+x^2-2x}{x\left|x+2\right|-x^2+4}\)
a) Rút gọn biểu thức D
b) Tìm x nguyên để D có giá trị nguyên
c) Tìm giá trị của D khi x = 6