Bài giải
Ta có: 2x + 3y \(⋮\)7 và x + y \(⋮\)7
Suy ra 2(x + y) + y \(⋮\)7
Vì 2(x + y) + y \(⋮\)7 và 2(x + y) \(⋮\)7
Nên y \(⋮\)7
Vì x + y \(⋮\)7 và y\(⋮\)7
Nên x \(⋮\)7
Suy ra x và y đều chia hết cho 7.
Bài giải
Ta có: 2x + 3y \(⋮\)7 và x + y \(⋮\)7
Suy ra 2(x + y) + y \(⋮\)7
Vì 2(x + y) + y \(⋮\)7 và 2(x + y) \(⋮\)7
Nên y \(⋮\)7
Vì x + y \(⋮\)7 và y\(⋮\)7
Nên x \(⋮\)7
Suy ra x và y đều chia hết cho 7.
Chứng minh : Nếu x,y N sao cho 3x - y + 1 và 2x + 3y đều chia hết cho 7 thì x và y chia cho 7 dư 3.
Chứng tỏ rằng : 2x+3y chia hết cho 7 thì 9x+5y chia hết cho 7 và ngược lại
Chứng tỏ rằng : x+5y chia hết cho 7 thì 10x +y chia hết cho 7 và ngược lại
Chứng minh: Nếu x,y thuộc N sao cho 3x-y+1 và 2x+3y-1 chia hết cho 7 thì x,y chia cho 7 đều dư 3
Chứng Minh: Nếu x,y là các số tự nhiên sao cho 3x-y+1 và 2x+3y-1 đều chia hết cho 7 thì x,y chia cho 7 đều dư 3
a) Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
b) Chứng minh rằng : Nếu 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17 (x, y thuoc N). Điều ngược lại có đúng không ?
Chứng minh : Nếu x,y \(\in\) N sao cho 3x - y + 1 và 2x + 3y đều chia hết cho 7 thì x và y chia cho 7 dư 3.
Chứng minh rằng:
a)10n-1 chia hết cho 99, với n là số tự nhiên chẵn
b)Nếu 3x+5y chia hết cho 7 thì x+4y chia hết cho 7 (x,y là các số tự nhiên) và ngược lại
c)Nếu 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17 (x,y là các số tự nhiên).Điều đó ngược lại có đúng
không?
chứng tỏ rằng nếu x,y thuộc Z và 10x+2y chia hết cho 7 và 4x+11y chia hết cho 7 thì 2x2+5y2 chia hết cho 7
Chứng minh rằng :
a/ Nếu 3x+5y chia hết cho 7 ( a;b thuộc N ) thì x +4y chia hết cho 7 ( x;y thuộc N )
Điều ngược lại có đúng không ?
b/ Nếu 2x+3y chia hết cho 17 ( a;b thuộc N ) thì 9x+5y chia hết cho 17( x;y thuộc N )
Điều ngược lại có đúng không ?