\(N=1+3^2+3^4+...+3^{100}\)
\(\Rightarrow3^2N=3^2+3^4+...+3^{102}\)
\(\Rightarrow3^2N-N=\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(\Rightarrow8N=3^{102}-1\)
\(\Rightarrow N=\frac{3^{102}-1}{8}\)
32N=32+34+36+38+...+3100+3102=N+3102
<=> 9N=N+3102
=> 8N=3102
=>\(N=\frac{3^{102}}{8}\)
N =1+ 3[(100 - 2 ) : 2 + 1 x (100 + 2 )] : 2
N = 1 + 32550
N = 30 + 32550
N = 32550