Violympic toán 9

NN
n là số tự nhiên khác 0

tìm min p=\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}+\frac{101}{n+1}\)

NL
15 tháng 4 2020 lúc 20:40

\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{n^2\left(n+1\right)^2+n^2+\left(n+1\right)^2}{n^2\left(n+1\right)^2}=\frac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{n\left(n+1\right)^2}=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}\)

\(\Rightarrow p=n+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}+\frac{101}{n+1}\)

\(p=n+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}+\frac{101}{n+1}\)

\(p=n+1-\frac{1}{n+1}+\frac{101}{n+1}=n+1+\frac{100}{n+1}\ge2\sqrt{\frac{100\left(n+1\right)}{n+1}}=20\)

\(p_{min}=20\) khi \(n+1=\frac{100}{n+1}\Leftrightarrow n=9\)

Bình luận (0)
NN
16 tháng 4 2020 lúc 9:39

bạn giải thích cho mình chỗ dấu suy ra thứ 2 được không ạ, vì sao lại xuất hiện n+1/1.2 +......... vậy ạ?

Bình luận (0)
NL
16 tháng 4 2020 lúc 16:48

Nguyễn Hồng Nhung

Thay vào công thức:

\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1+\frac{1}{1.2}\) ; \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2.3}\) ...

Cộng lại:

\(1+\frac{1}{1.2}+1+\frac{1}{2.3}+...+1+\frac{1}{n\left(n+1\right)}\)

Có n số 1 cộng với nhau ra n

CÒn lại đống \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\) thôi

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
DS
Xem chi tiết
LN
Xem chi tiết
AJ
Xem chi tiết
DS
Xem chi tiết
KM
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
NV
Xem chi tiết