Violympic toán 9

LN

$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{x}}<2\left(n-1\right)$

NM
11 tháng 11 2021 lúc 21:23

Sửa: \(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{x}}< 2\left(\sqrt{x}-1\right)\)

Cần cm: \(\dfrac{1}{\sqrt{k}}< \dfrac{2}{\sqrt{k}+\sqrt{k-1}}\left(k\in N\text{*},k\ge2\right)\)

\(\Leftrightarrow\sqrt{k}+\sqrt{k-1}< 2\sqrt{k}\\ \Leftrightarrow\sqrt{k}>\sqrt{k-1}\\ \Leftrightarrow k>k-1\left(luôn.đúng\right)\)

Áp dụng: \(\dfrac{1}{\sqrt{2}}< \dfrac{2}{\sqrt{2}+\sqrt{1}};...;\dfrac{1}{\sqrt{x}}< \dfrac{2}{\sqrt{x}+\sqrt{x-1}}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< \dfrac{2}{\sqrt{2}+\sqrt{1}}+\dfrac{2}{\sqrt{3}+\sqrt{2}}+...+\dfrac{2}{\sqrt{x}+\sqrt{x-1}}\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\left(\sqrt{2}-\sqrt{1}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+...+2\left(\sqrt{x}-\sqrt{x-1}\right)\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\sqrt{2}-2+2\sqrt{3}-2\sqrt{2}+...+2\sqrt{x}-2\sqrt{x-1}\\ \Leftrightarrow\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{x}}< 2\sqrt{x}-2=2\left(\sqrt{x}-1\right)\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
VH
Xem chi tiết
AM
Xem chi tiết
BL
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết
KM
Xem chi tiết
DS
Xem chi tiết