\(n=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{2005.2010}=\frac{1}{5}\left(\frac{5}{1.5}+\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2010.2015}\right)\)
\(=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)=\frac{1}{5}\left(1-\frac{1}{2010}\right)\)
\(=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{10050}\)
mik nghĩ đây là bài lớp 6
-->n=\(\frac{1}{5}\left(\frac{5}{1.5}+\frac{5}{5.10}+\frac{5}{10.15}+....+\frac{5}{2005.2010}\right)\)
-->n=\(\frac{1}{5}\left[\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{10}\right)+..+\frac{1}{2005}-\frac{1}{2010}\right]\)
-->n=1/5(1-1/2010)
-->n=2009/2010.1/5
-->n=2009/10050
______________________________________________
li-kecho mk nhé bn