Ta có: ab - cd = 1
=> ab = 1 + cd
Giả sử n\(^2\)= abcd = 100ab + cd = 100 . ( 1 + cd + cd ) = 101cd + 100
Điều kiện: 31 < n < 100
=> 101cd = n\(^2\)- 100 = ( n + 10 ) . ( n - 10 )
Vì n < 100
=> n - 10 < 90 và 101 là số nguyên tố nên n + 10 = 101
=> n = 101 - 10 = 91
Ta có: n = 91 nên n\(^2\)= 91\(^2\)= 8281
Vậy số chính phương cần tìm có dạng abcd thỏa mãn yêu cầu đề bài là 8281