PB

Một người xây nhà xưởng hình hộp chữ nhật có diện tích mặt sàn là 1152 m 2  và chiều cao cố định. Người đó xây các bức tường xung quanh và bên trong để ngăn nhà xưởng thành ba phòng hình chữ nhật có kích thước như nhau (không kể trần nhà). Vậy cần phải xây các phòng theo kích thước nào để tiết kiệm chi phí nhất (bỏ qua độ dày các bức tường).

A. 16m x 24m

B. 8x 48m

C. 12x 32m

D. 24x 32m

CT
28 tháng 11 2019 lúc 6:23

Đáp án D

Đặt x, y, h lần lượt là chiều dài, chiều rộng và chiều cao mỗi phòng.

Theo giả thiết, ta có x.3y = 1152  → y   =   384 x

Để tiết kiệm chi phí nhất khi diện tích toàn phần nhỏ nhất.

Ta có 

Vì h không đổi nên S t p  nhỏ nhất khi (với x > 0) nhỏ nhất.

Khảo sát  với x > 0 ta được f(x) nhỏ nhất khi x = 24 => y = 16

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết