Bài 1: Phương trình bậc nhất hai ẩn

NB

Một khu vườn hình chữ nhật có chiều dài gấp 2 chiều rộng . Nếutăng chiều dài 77m, tăng chiều rộng 15m thì diện tích tăng gấp 3 lần diệntích ban đầu. Tính diện tích khu vườn.

NT
20 tháng 2 2021 lúc 13:39

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của khu vườn(Điều kiện: a>0; b>0; \(a\ge b\))

Vì chiều dài gấp 2 lần chiều rộng nên ta có phương trình: a=2b

hay a-2b=0(1)

Diện tích ban đầu là: \(ab\left(m^2\right)\)

Vì khi tăng chiều dài 77m và tăng chiều rộng 15m thì diện tích sẽ gấp 3 lần diện tích ban đầu nên ta có phương trình:

\(\left(a+77\right)\left(b+15\right)=3ab\)

\(\Leftrightarrow ab+15a+77b+1155-3ab=0\)

\(\Leftrightarrow15a+77b-2ab=-1155\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-2b=0\\15a+77b-2ab=-1155\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\30b+77b-2\cdot2b\cdot b+1155=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\-4b^2+107b+1155=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\-4b^2+140b-33b+1155=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\-4b\left(b-35\right)-33\left(b-35\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\\left(b-35\right)\left(-4b-33\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\\left[{}\begin{matrix}b-35=0\\-4b-33=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2b\\\left[{}\begin{matrix}b=35\left(nhận\right)\\b=-\dfrac{33}{4}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot35=70\\b=35\end{matrix}\right.\)(thỏa ĐK)

Diện tích ban đầu của khu vườn là:

\(ab=70\cdot35=2450\left(m^2\right)\)

Vậy: Diện tích ban đầu của khu vườn là \(2450m^2\)

Bình luận (0)

Các câu hỏi tương tự
AM
Xem chi tiết
ML
Xem chi tiết
TL
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
GB
Xem chi tiết
BC
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết