QN

Một đội tuyển tham dự kỳ thi học sinh giỏi 3 môn Văn, Toán, Ngoại ngữ do thành phố tổ chức đạt được 15 giải. Hỏi đội tuyển học sinh giỏi đó có bao nhiêu học sinh? Biết rằng:

Học sinh nào cũng có giải.

Bất kỳ môn nào cũng có ít nhất 1 học sinh chỉ đạt 1 giải.

Bất kỳ hai môn nào cũng có ít nhất 1 học sinh đạt giải cả hai môn.

Có ít nhất 1 học sinh đạt giải cả 3 môn.

Tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần.

H24
18 tháng 2 2022 lúc 16:17

Tham khảo:

 

Gọi số học sinh đạt giải cả 3 môn là a (học sinh) 

Gọi số học sinh đạt giải cả 2 môn là b (học sinh) 

Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh) 

Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải). 

Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. 

Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên: 

- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán. 

- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ. 

- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ. 

Do vậy b= 3. 

Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là: 

3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.

Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. 

Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). 

Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c) 

Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải. 

Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).

Bình luận (1)