Chương III - Hệ hai phương trình bậc nhất hai ẩn

HJ

Một cano xuôi dòng từ bến A đến bến B với vận tốc  trung bình 30 km/h. Sau đó lại ngược dòng từ B về A, Thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 40 phút. Tính khoảng cách giữa hai bến A và B, biết vận tốc dòng nước là 3 km/h và vận tốc thực của cano là không đổi.

NT
11 tháng 3 2023 lúc 14:38

Gọi khoảng cách AB là x

Vận tốc thực ko đổi

=>Vận tốc từ B về A là 30km/h

Theo đề, ta có: x/33+x/27=2/3

=>x=99/10

Bình luận (0)
H9
11 tháng 3 2023 lúc 14:42

Gọi khoảng cách giữa A và B là \(x\left(km\right)\)
Khi đó bạn sẽ có 2 phương trình theo đề bài:
Thời gian khi xuôi dòng từ A đến B là: \(t_1=\dfrac{x}{\left(30+3\right)}\) 
Thời gian khi ngược dòng từ B về A là: \(t_2=\dfrac{x}{\left(30-3\right)}\)
Mà thời gian khi xuôi dòng ít hơn thời gian khi ngược dòng là \(\dfrac{2}{3}\) giờ
\(t_1+\dfrac{2}{3}=t_2\)
\(\Leftrightarrow\dfrac{x}{\left(30+3\right)}+\dfrac{2}{3}=\dfrac{x}{\left(30-3\right)}\)

\(\Leftrightarrow\dfrac{x}{33}+\dfrac{2}{3}=\dfrac{x}{27}\)

\(\Leftrightarrow\dfrac{x}{33}+\dfrac{22}{33}=\dfrac{x}{27}\)

\(\Leftrightarrow\dfrac{x+22}{33}=\dfrac{x}{27}\)

\(\Leftrightarrow27\left(x+22\right)=33x\)

\(\Leftrightarrow27x+594=33x\)

\(\Leftrightarrow594=33x-27x=6x\)

\(\Leftrightarrow x=\dfrac{594}{6}=99\left(km\right)\)
Vậy quãng đường AB có độ dài 99km

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
ND
Xem chi tiết
TD
Xem chi tiết
DD
Xem chi tiết
BM
Xem chi tiết
H24
Xem chi tiết
HK
Xem chi tiết
LM
Xem chi tiết
VV
Xem chi tiết