\(a,=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=3^2=9\\ b,=\dfrac{3^{17}\cdot2^{12}}{2^8\cdot3^8\cdot3^9}=2^4=16\\ c,=\dfrac{2^{20}\cdot3^{12}+3^{12}\cdot2^{15}}{2^{13}\cdot3^{13}\cdot2^2-2^{16}\cdot3^{12}}=\dfrac{2^{15}\cdot3^{12}\left(2^5+1\right)}{2^{15}\cdot3^{12}\left(3-2\right)}=\dfrac{33}{1}=33\\ d,=\dfrac{2^2\cdot2^9\cdot3^9-2^5\cdot2^4\cdot3^8}{2^3\cdot2^8\cdot3^8}=\dfrac{2^9\cdot3^8\left(2^2\cdot3-1\right)}{2^{11}\cdot3^8}=\dfrac{11}{2^2}=\dfrac{11}{4}\)