Violympic toán 9

SN

Mọi người giúp mình bài này với ạ.
Với a,b,c>0. Chứng minh rằng \(\frac{1}{\sqrt{a}}\)+\(\frac{1}{\sqrt{b}}\)+\(\frac{2\sqrt{2}}{\sqrt{c}}\) \(\frac{8}{\sqrt{a+b+c}}\)

NL
29 tháng 8 2020 lúc 0:13

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{2c}\right)=\left(x;y;z\right)\)

BĐT trở thành: \(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}\ge\frac{8}{\sqrt{x^2+y^2+\frac{z^2}{2}}}\)

Ta có: \(VT=\frac{1}{x}+\frac{1}{y}+\frac{2^2}{z}\ge\frac{\left(1+1+2\right)^2}{x+y+z}=\frac{16}{x+y+z}\) (1)

\(\left(1.x+1.y+\sqrt{2}.\frac{z}{\sqrt{2}}\right)^2\le\left(1+1+2\right)\left(x^2+y^2+\frac{z^2}{2}\right)\)

\(\Rightarrow x+y+z\le2\sqrt{x^2+y^2+\frac{z^2}{2}}\)

\(\Rightarrow VP=\frac{8}{\sqrt{x^2+y^2+\frac{z^2}{2}}}\le\frac{16}{x+y+z}\)(2)

Từ (1); (2) suy ra đpcm

Dấu "=" xảy ra khi \(x=y=\frac{z}{2}\) hay \(a=b=\frac{c}{2}\)

Bình luận (0)

Các câu hỏi tương tự
AR
Xem chi tiết
H24
Xem chi tiết
HV
Xem chi tiết
NA
Xem chi tiết
VH
Xem chi tiết
BB
Xem chi tiết
UI
Xem chi tiết
UI
Xem chi tiết
AJ
Xem chi tiết