Violympic toán 9

AJ

Cho a, b, c>0 thỏa abc=8. Chứng minh rằng \(\frac{1}{\sqrt{1+a^3}}+\frac{1}{\sqrt{1+b^3}}+\frac{1}{\sqrt{1+c^3}}\ge1\)

NL
14 tháng 6 2020 lúc 19:12

\(\frac{1}{\sqrt{a^3+1}}=\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\ge\frac{2}{a+1+a^2-a+1}=\frac{2}{a^2+2}\)

Thiết lập tương tự: \(\frac{1}{\sqrt{b^3+1}}\ge\frac{2}{b^2+2}\) ; \(\frac{1}{\sqrt{c^3+1}}\ge\frac{2}{c^2+2}\)

\(\Rightarrow VT\ge\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}=\frac{1}{\frac{a^2}{2}+1}+\frac{1}{\frac{b^2}{2}+1}+\frac{1}{\frac{c^2}{2}+1}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xyz=\frac{1}{8}\)

\(\Rightarrow VT\ge\frac{x^2}{x^2+\frac{1}{2}}+\frac{y^2}{y^2+\frac{1}{2}}+\frac{z^2}{z^2+\frac{1}{2}}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+\frac{3}{2}}\)

\(\Rightarrow VT\ge\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x^2+y^2+z^2+\frac{3}{2}}\ge\frac{x^2+y^2+z^2+6.\sqrt[3]{\left(xyz\right)^2}}{x^2+y^2+z^2+\frac{3}{2}}=\frac{x^2+y^2+z^2+\frac{3}{2}}{x^2+y^2+z^2+\frac{3}{2}}=1\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\) hay \(a=b=c=2\)

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
VH
Xem chi tiết
LQ
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
KN
Xem chi tiết
NA
Xem chi tiết
AJ
Xem chi tiết
LQ
Xem chi tiết