DD

Mọi người giải giúp mình bài 4 với ạ mình cảm ơn

NT
21 tháng 7 2021 lúc 16:15

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=\dfrac{81}{4}+36=\dfrac{225}{4}\Rightarrow BC=\dfrac{15}{2}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\dfrac{81}{4}}{\dfrac{15}{2}}=\dfrac{27}{10}\)cm 

=> \(CH=BC-BH=\dfrac{15}{2}-\dfrac{27}{10}=\dfrac{24}{5}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}\)

\(=\dfrac{4,5.6}{\dfrac{15}{2}}=\dfrac{18}{5}\)cm 

Bình luận (0)
AT
21 tháng 7 2021 lúc 16:18

tam giác ABC vuông tại A nên áp dụng Py-ta-go

\(\Rightarrow BC^2=AB^2+AC^2=\left(4,5\right)^2+6^2=\dfrac{225}{4}\Rightarrow BC=\dfrac{15}{2}=7,5\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{\left(4,5\right)^2}{7,5}=\dfrac{27}{10}=2,7\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{6^2}{7,5}=\dfrac{24}{5}=4,8\left(cm\right)\)

Bình luận (2)

Các câu hỏi tương tự
HA
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
DD
Xem chi tiết
QA
Xem chi tiết
PK
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết