nó là bđt Cauchy Schwarz dạng Engel hoặc nhiều tên gọi khác ...
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
nó là bđt Cauchy Schwarz dạng Engel hoặc nhiều tên gọi khác ...
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
cho bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng bất đẳng thức trên tìn giá trị nhỏ nhất của\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)
với x,y dương và x+y=1
Chứng minh rằng với mọi số dương x,y ta luôn có bất đẳng thức \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\)\(\ge\)\(\frac{9}{4}\)
Chứng minh bất đẳng thức không có tên:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{a^2}{x}\)+ \(\frac{b^2}{y}\) \(\ge\) \(\frac{\left(a+b\right)^2}{x+y}\)
Chứng minh bất đẳng thức trên
Mong mn giúp đỡ, mình đang cần gấp. Cảm ơn ạ.
Các bạn ơi cho mình hỏi bất đẳng thức a2 + b2 >= \(\frac{\left(a+b\right)^2}{2}\) tên là gì vậy?
Thanks các bạn nhiều :3
CMR bất đẳng thức sau đúng với mọi x;y là các số thực bất kì khác 0 :
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Bài sau đây làm tôi không còn dám coi thường BĐT lớp 8:
Cho x, y là các số thực thỏa mãn: \(x\ge2,x+y\ge3\). Tìm Min:
\(A=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
Nghĩ mãi mới ra cách AM-GM (hơn 10 phút, mấy lần đầu nhóm sai!), rồi viết lại thành SOS nên 15 phút mới xong..
\(A-\frac{35}{6}=\left(x-2\right)^2\left(1+\frac{1}{4x}\right)+\left(y-1\right)^2+\frac{\left(x+y-3\right)^2}{9\left(x+y\right)}+\left[\frac{17}{9}\left(x+y\right)+\frac{7}{4}x-\frac{55}{6}\right]\)
Cách AM-GM:
\(A=\left(x-2\right)^2+\left(y-1\right)^2+\frac{1}{x}+\frac{1}{x+y}+4x+2y-5\)
\(\ge\left(\frac{1}{x}+\frac{1}{4}x\right)+\left(\frac{1}{x+y}+\frac{15}{4}x+2y-5\right)\)
\(\ge1+\left[\frac{1}{9}\left(x+y\right)+\frac{1}{x+y}\right]+\frac{17}{9}\left(x+y\right)+\frac{7}{4}x-5\ge\frac{35}{6}\)
Đẳng thức xảy ra khi \(x=2;y=1\)
Chứng minh các bất đẳng thức sau:
a) \(x^2\:+\:\frac{y^2}{16}\:\ge\frac{1}{2}xy\)
b) \(\left(m\:+\:4\right)^2\:\ge16m\)
Cho x+y+z=3. Chúng minh bất đẳng thức: \(\frac{1}{x^2+x}\)+ \(\frac{1}{y^2+y}\)+\(\frac{1}{z^2+z}\)\(\ge\)\(\frac{3}{2}\)