NK

M.n giúp mk nha!

Với bộ số (6;5;2) ta có đẳng thức \(\frac{65}{26}=\frac{5}{2}.\) Tìm tất cả các bộ số (a;b;c) gồm các chữ số trong hệ thập phân a;b;c đôi một khác nhau và khác 0 sao cho đẳng thức  \(\frac{\overline{ab}}{\overline{ca}}=\frac{b}{c}\) đúng.

H24
6 tháng 10 2016 lúc 18:50

Điều kiện \(0< a,b,c\le9\) và \(a\ne b,\)\(b\ne c,\)\(c\ne a.\)

Ta viết lại \(\frac{\overline{ab}}{\overline{ca}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\left(10a+b\right)c=\left(10c+a\right)b\)\(\Leftrightarrow\)\(10ac-10bc=ab-bc\)

\(\Leftrightarrow\)\(2.5c\left(a-b\right)=b\left(a-c\right)\)(1)

Do \(c\ne0\) và \(a\ne b\) nên \(b\left(a-c\right)\) chia hết cho 5. Xảy ra 3 trường hợp:

- TH1: \(b\) chia hết cho 5, mà \(0< b\le9\) \(\Rightarrow\)\(b=5.\)

(1) \(\Leftrightarrow\)\(2.5.c\left(a-5\right)=5\left(a-c\right)\)\(\Leftrightarrow\)\(2c\left(a-5\right)=a-c\)\(\Leftrightarrow\)\(2ac-a-9c=0\)(2)

\(\Leftrightarrow\)\(a=2ac-9c=c\left(2a-9\right)\)\(\Leftrightarrow\)\(c=\frac{a}{2a-9}\)

Mặt khác (2) \(\Leftrightarrow\)\(2ac=a+9c\)\(\Leftrightarrow\)\(2c=\frac{a+9c}{a}=1+\frac{9c}{a}=1+\frac{\frac{9a}{2a-9}}{a}=1+\frac{9}{2a-9}\)

Do \(2c>0\) nên \(2a-9>0,\) do đó \(2a-9\in\left\{3;9\right\}\)Ta có \(2a-9\ne1\) vì \(a\ne c.\)

Ta tìm được \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right).\)

- TH2: \(a-c\) chia hết cho 5 nên \(a-c=5\)\(\Rightarrow\)\(a=c+5\)

(1) \(\Leftrightarrow\)\(2c\left(c+5-b\right)=b\)\(\Leftrightarrow\)\(b=\frac{2c^2+10c}{2c+1}\)\(\Leftrightarrow\)\(2b=2c+9-\frac{9}{2c+1}\)

Suy ra \(2c+1\in\left\{3;9\right\}\) do \(c\ne0.\) Tìm được \(\left(a;b;c\right)=\left(6;4;1\right),\left(9;8;4\right).\)

- TH3: \(c=a+5\)

(1) \(\Leftrightarrow\)\(2\left(a+5\right)\left(a-b\right)=-b\)\(\Leftrightarrow\)\(b=\frac{2a^2+10a}{2a-9}\)\(\Leftrightarrow\)\(2b=2a+19-\frac{9.19}{2a-9}\)

Suy ra \(b>9,\) ta không xét.

Vậy có 4 bộ số thỏa đề bài: \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right),\left(6;4;1\right),\left(9;8;4\right).\)

Bình luận (0)
H24
6 tháng 10 2016 lúc 20:09

a;b;c=(9;5;1),(9;8;4),(6;4;1),(6;5;2)

Bình luận (0)
TA
6 tháng 10 2016 lúc 22:31

a;b;c=(9;5;1),(9;8;4),(6;4;1),(6;5;2) là kết quả đúng đó !!!

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
NH
Xem chi tiết
LT
Xem chi tiết
DD
Xem chi tiết
TD
Xem chi tiết
KA
Xem chi tiết
SY
Xem chi tiết