TH

Mn giúp mình bài này với.

Chứng minh rằng: Px =7^× + 3^× -1chia hết cho 9 ¥×€N

XO
2 tháng 2 2023 lúc 22:08

P(x) = 7x + 3x - 1 \(⋮9\)

Với x = 3k + 1 (k \(\inℕ^∗\))

= 73k + 1 + 33k + 1 - 1

= 343k.3 + 27k.3 - 1 

= (343k.3 - 3) + 27k.3 + 2

= 3(343k - 1) + 27k.3 + 2 

= 3(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2 

= 3.342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.3 + 2 

=> P(x) : 9 dư 2

Với x = 3k + 2  

P(x) = 73k + 2 + 33k + 2 - 1

= 343k.49 + 27k.9 - 1 

= (343k.49 - 49) + 27k.9 + 48

= 49(343k - 1) + 27k.9 + 48

= 49(343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k.9 + 45 + 3

=> P(x) : 9 dư 3

Với x = 3k 

Khi đó P(x) = 73k + 33k - 1

= (343k - 1) + 27k

= (343 - 1)(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k

= 342(343k - 1 + 343k - 2 + ... + 343 + 1) + 27k \(⋮9\)

Vậy P(x) \(⋮\Leftrightarrow x⋮3\)

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
ML
Xem chi tiết
LV
Xem chi tiết
HT
Xem chi tiết
MC
Xem chi tiết
DH
Xem chi tiết
QN
Xem chi tiết
NM
Xem chi tiết
PL
Xem chi tiết