HX

loading...  Mình đang cần gấp và câu lời giải chi tiết ạ

GH
22 tháng 6 2023 lúc 19:15

Với m = 3 thì (d): y = 8x - 7

PTHĐGĐ của (P) và (d): \(x^2-8x+7=0\)

Có: \(a+b+c=1+\left(-8\right)+7=0\)

=> PT có 2 nghiệm phân biệt \(x_1=1;x_2=7\)

\(x_1=1\Rightarrow y_1=x_1^2=1^2=1\\ x_2=7\Rightarrow y_2=x_2^2=7^2=49\)

Tọa độ giao điểm của (P) và (d) là: \(\left(1;1\right);\left(7;49\right)\)

b)

PTHĐGĐ của (P) và (d) là: 

\(x^2-2\left(m+1\right)x+3m-2=0\)

\(\Delta'=\left(m+1\right)^2-\left(3m-2\right)=m^2+2m+1-3m+2=m^2-m+3\\ =m^2-m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)

Theo đề: \(x_1^2+x_2^2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)

\(\Leftrightarrow4m^2+8m+4-6m+4=20\\ \Leftrightarrow4m^2+2m+8-20=0\\ \Leftrightarrow4m^2+2m-12=0\\ \Leftrightarrow2m^2+m-6=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-2\left(tm\right)\\m=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)

Bình luận (0)
H24
22 tháng 6 2023 lúc 19:18

Gọi tọa độ của \(\left(P\right),\left(d\right)\) là \(A\left(x_A;y_A\right),B\left(x_B;y_B\right)\)

\(a,m=3\)

\(\Rightarrow x^2=2\left(3+1\right)x-3.3+2\)

\(\Rightarrow x^2-8x+7=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

Thay \(x=7\) vào \(\left(P\right):y=x^2\Rightarrow y=7^2=49\)

Khi m = 3 thì đường thẳng \(\left(d\right):y=2\left(3+1\right)x-3.3+2=8x-7\)

Thay \(x=1\) vào \(\left(d\right):y=8x-7=8.1-7=1\)

Vậy \(A\left(7;49\right),B\left(1;1\right)\)

\(\Rightarrow y=\left(2m+2\right)x-3m+2\)

\(b,\) Vì \(\left(P\right)\) và \(\left(d\right)\) luôn cắt nhau tại 2 điểm pb A,B \(\forall m\) nên :

\(x^2=2\left(m+1\right)x-3m+2\Leftrightarrow x^2-2\left(m+1\right)x+3m-2\)

Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=3m-2\end{matrix}\right.\)

Ta có : \(x_1^2+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\)

\(\Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)

\(\Leftrightarrow4m^2+8m+4-6m+4-20=0\)

\(\Leftrightarrow4m^2+2m-12=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m=-2\end{matrix}\right.\)

Vậy \(m=\dfrac{3}{2},m=-2\) thì thỏa mãn đề bài.

Bình luận (0)

Các câu hỏi tương tự
QA
Xem chi tiết
HX
Xem chi tiết
VD
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết