M = \(15.\left(\frac{1}{15.16}+\frac{1}{16.17}+...+\frac{1}{19.20}\right)\)
= \(15.\left(\frac{1}{15}-\frac{1}{16}+\frac{1}{16}-\frac{1}{17}+...+\frac{1}{19}-\frac{1}{20}\right)\)
= \(15.\left(\frac{1}{15}-\frac{1}{20}\right)\)
= \(15.\frac{1}{60}\)= \(\frac{1}{4}\)\(< \frac{1}{3}\)
(=) \(M< \frac{1}{3}\)\(\left(đpcm\right)\)
Ta có: \(M=\frac{15}{15.16}+\frac{15}{16.17}+\frac{15}{17.18}+\frac{15}{18.19}+\frac{15}{19.20}\)
\(\Rightarrow M=15.\left(\frac{1}{15.16}+\frac{1}{16.17}+\frac{1}{17.18}+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(\Rightarrow M=15.\left(\frac{1}{15}-\frac{1}{16}+\frac{1}{16}-\frac{1}{17}+\frac{1}{17}-\frac{1}{18}+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(\Rightarrow M=15.\left(\frac{1}{15}-\frac{1}{20}\right)\)
\(\Rightarrow M=15.\frac{1}{60}=\frac{1}{4}\)
Ta thấy: \(\frac{1}{4}< \frac{1}{3}\Rightarrow M< \frac{1}{3}\)
Vậy \(M< \frac{1}{3}\)
Chúc bạn học tốt!
\(\Rightarrow M=15.\left(\frac{1}{15.16}+\frac{1}{16.17}+...+\frac{1}{19.20}\right)\)
\(M=15.\left(\frac{1}{15}-\frac{1}{16}+\frac{1}{16}-\frac{1}{17}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(M=15.\left(\frac{1}{15}+\left(-\frac{1}{16}+\frac{1}{16}\right)+\left(-\frac{1}{17}+\frac{1}{17}\right)+...+\left(\frac{-1}{19}+\frac{1}{19}\right)-\frac{1}{20}\right)\)
\(M=15.\left(\frac{1}{15}+0+0+0+...+0-\frac{1}{20}\right)\)
\(M=15.\left(\frac{1}{15}-\frac{1}{20}\right)=\frac{15}{60}\)
Mà \(\frac{1}{3}=\frac{20}{60}\)
\(\Rightarrow M< \frac{1}{3}\)
Vậy : \(M< \frac{1}{3}\)
\(M=15.\left(\frac{1}{15}-\frac{1}{16}+\frac{1}{16}-\frac{1}{17}+.....+\frac{1}{19}-\frac{1}{20}\right)\)
\(M=15.\left(\frac{1}{15}-\frac{1}{20}\right)=\frac{1}{4}< \frac{1}{3}\Rightarrow dpcm\)
Ai thấy đúng thì ủng hộ nha !!!