OK

M = \(\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

Tìm x thuộc Z để 2M có giá trị nguyên.

GL
21 tháng 6 2019 lúc 11:29

\(2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)                  

 để 2M có giá trị nguyên thì \(2\sqrt{x}+2⋮\sqrt{x}+2\)(1)

Lại có \(2\sqrt{x}+4⋮\sqrt{x}+2\)(2)

\(\Rightarrow2⋮\sqrt{x}+2\)(lấy (2) trừ (1))

mà \(\sqrt{x}+2\ge2\)

\(\Rightarrow\sqrt{x}+2=2\)   ( vì x thuộc Z)

=> x=0

Bình luận (0)
TP
21 tháng 6 2019 lúc 13:12

Ta có: \(M=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)  ( ĐK: \(x\ge0\) )

\(\Leftrightarrow2M=\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\)

\(\Leftrightarrow2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)

\(\Leftrightarrow2M=\frac{2\sqrt{x}+4-2}{\sqrt{x}+2}\)

\(\Leftrightarrow2M=\frac{2\sqrt{x}+4}{\sqrt{x}+2}-\frac{2}{\sqrt{x}+2}\)

\(\Leftrightarrow2M=2-\frac{2}{\sqrt{x}+2}\)

Để 2M có giá trị nguyên <=> \(2⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(2\right)\)

\(\Leftrightarrow\sqrt{x}+2\in\left\{-1;-2;1;2\right\}\)

Vì \(x\ge0\Leftrightarrow\sqrt{x}+2\ge2\)

\(\Rightarrow\sqrt{x}+2=2\)

\(\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

Vậy khi x = 0 thì 2M có giá trị nguyên! 

Chúc bạn học tốt! :))

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
AP
Xem chi tiết
NH
Xem chi tiết
NV
Xem chi tiết