AO

\(\left(x+\sqrt{x^2+\sqrt{2015}}\right)\left(y+\sqrt{y^2+\sqrt{2015}}\right)=\sqrt{2015}\) Tính x+y

KN
17 tháng 4 2020 lúc 8:26

Nhân cả 2 vế của đẳng thức đã cho với \(\left(x-\sqrt{x^2+\sqrt{2015}}\right)\)ta được:

\(-\sqrt{2015}\left(y+\sqrt{y^2+\sqrt{2015}}\right)=\sqrt{2015}\left(x-\sqrt{x^2+\sqrt{2015}}\right)\)(1)

Nhân cả 2 vế của đẳng thức đã cho với \(\left(y-\sqrt{y^2+\sqrt{2015}}\right)\)ta được:

\(-\sqrt{2015}\left(x+\sqrt{x^2+\sqrt{2015}}\right)=\sqrt{2015}\left(y-\sqrt{y^2+\sqrt{2015}}\right)\)(2)

Lấy (1) + (2), ta được:

\(-\sqrt{2015}\left(y+\sqrt{y^2+\sqrt{2015}}+x+\sqrt{x^2+\sqrt{2015}}\right)\)

\(=\sqrt{2015}\left(x+y-\sqrt{x^2+\sqrt{2015}}-\sqrt{y^2+\sqrt{2015}}\right)\)

\(\Leftrightarrow x+y+\sqrt{x^2+\sqrt{2015}}+\sqrt{y^2+\sqrt{2015}}\)

\(=-x-y+\sqrt{x^2+\sqrt{2015}}+\sqrt{y^2+\sqrt{2015}}\)

\(\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

Vậy x + y = 0

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DM
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
KL
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết