PN

\(\left[\dfrac{2x}{x+3}+\dfrac{8}{x-3}\dfrac{2x+12}{x^2-9}\right].\dfrac{x+3}{x^2+6}\) với x ≠ (+-3)

a. Rút gọn biểu thức A

b. Tìm giá trị của x để biểu thức A có giá trị = 5

NM
25 tháng 9 2021 lúc 15:46

\(a,A=\dfrac{2x\left(x-3\right)+8\left(x+3\right)-2x-12}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x^2+6}\\ A=\dfrac{2x^2-6x+8x+24-2x-12}{\left(x-3\right)}\cdot\dfrac{1}{x^2+6}\\ A=\dfrac{2x^2+12}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2\left(x^2+6\right)}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2}{x-3}\)

\(b,A=5\Leftrightarrow\dfrac{2}{x-3}=5\Leftrightarrow5x-15=2\Leftrightarrow x=\dfrac{17}{5}\)

Bình luận (0)