Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

MC

\(\left(C_n^0\right)^2+\left(C_n^1\right)^2+...+\left(C_n^n\right)^2=C_{2n}^n\)

NL
22 tháng 12 2020 lúc 8:50

Giả sử có 1 nhóm người gồm 2n người, trong đó có n nam và n nữ.

Chọn n người từ 2n người đó, ta thực hiện theo 2 cách:

- Cách 1: chọn bất kì, có \(C_{2n}^n\) cách (1)

- Cách 2: giả sử trong n người được chọn có k nữ và \(n-k\) nam

Chọn k nữ từ n nữ, có \(C_n^k\) cách

Chọn \(n-k\) nam từ n nam, có \(C_n^{n-k}\) cách

Số cách thỏa mãn: \(\sum\limits^n_{k=0}C_n^kC_n^{n-k}=\sum\limits^n_{k=0}C_n^kC_n^k=\sum\limits^n_{k=0}\left(C_n^k\right)^2\) (2)

(1); (2) \(\Rightarrow\sum\limits^n_{k=0}\left(C_n^k\right)^2=C_{2n}^n\)

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
CG
Xem chi tiết
QN
Xem chi tiết
BB
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
NV
Xem chi tiết
DH
Xem chi tiết