Chương I - Căn bậc hai. Căn bậc ba

CD

\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

NT
21 tháng 1 2021 lúc 21:28

Ta có: \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x+xy-y=x^2+x+xy-y+2\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x+xy-y-x^2-x-xy+y-2=0\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2=0\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\\left(y+1\right)^2=\left(y-1\right)\left(y-2\right)-2xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y^2+2y+1=y^2-3y+2+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y^2+2y+1-y^2+3y-2-2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\3y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)

Bình luận (0)
TH
21 tháng 1 2021 lúc 21:32

\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\y^2+y-xy-x=y^2-2y+xy-2x-2xy\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2x=2\\x+3y=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-1\\-1+3y=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-1\\3y=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy hpt trên có nghiệm duy nhất (x;y) = (-1; \(\dfrac{1}{3}\))

Chúc bn học tốt!

Bình luận (0)
NL
21 tháng 1 2021 lúc 21:29

\(\left\{{}\begin{matrix}x^2+xy-x-y=x^2+x-xy-y+2xy+2\\y^2-xy-x+y=y^2+xy-2y-2x-2xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2x=2\\x+3y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
BR
Xem chi tiết
AD
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
AC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết