\(\left\{{}\begin{matrix}\left(x^3-y^3\right)+xy=7\\\left(x^2+y^2\right)-2\left(x-y\right)=5\end{matrix}\right.\)
giải hệ:
\(\left\{{}\begin{matrix}x+2y=7\\x^2+y^2-2xy=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=2\\x^2+y^2+164\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y+xy=-13\\x^2+y^2-x-y=32\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=3\\x^3-y^3=7\end{matrix}\right.\)
\(6.\left\{{}\begin{matrix}x+2y=5\\3x-y=1\end{matrix}\right.\)
\(7.\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y-3\right)=xy-3\end{matrix}\right.\)
\(8.\left\{{}\begin{matrix}\dfrac{1}{x+1}-\dfrac{3}{y-1}=-1\\\dfrac{2}{x+1}+\dfrac{4}{y-1}=3\end{matrix}\right.\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}x+y=6\\\\2x-3y=12\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-y=5\\\left(x-2\right)\left(y+3\right)=3+xy\end{matrix}\right.\)
Ghpt:
a) \(\left\{{}\begin{matrix}\left(4x^2+1\right).x+\left(y-3\right)\sqrt{5-2y}=0\\4x^2+y^2+2\sqrt{3-4x}=7\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+y^2=5\\\sqrt{y-1}\left(x+y-1\right)=\left(y-2\right)\sqrt{x+y}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-5\right)\left(y+4\right)=xy-10\\\left(x+3\right)\left(y-7\right)=xy+10\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}x^2-y^2=3\left(x-y\right)\\xy=2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=6\\x^2y+y^2x=20\end{matrix}\right.\)
Giải hpt sau:
a)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
giải hệ pt
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\left(x-1\right)+\left(y+2\right)=2\\4\left(x-1\right)+3\left(y+2\right)=7\end{matrix}\right.\)