\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{1}{y}=2\left(1\right)\\\dfrac{1}{x}+\dfrac{1}{y}=1\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)-\left(2\right)\)
\(\Rightarrow\left(\dfrac{3}{x}-\dfrac{1}{x}\right)+\left(\dfrac{1}{y}-\dfrac{1}{y}\right)=2-1\)
\(\Rightarrow\dfrac{2}{x}=1\)
\(\Rightarrow x=2\)
Thay \(x=2\) vào \(\left(1\right):\)
\(\Rightarrow\dfrac{3}{2}+\dfrac{1}{y}=2\)
\(\Rightarrow\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow y=2\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(2;2\right)\)