|3x-5|=2009(2010^2009+2010^2008+....+2010+1)-2010^2010=5
So sánh các giá trị \(A=\left(19^{2009}+5^{2009}\right)^{2010}\&B=\left(19^{2010}+5^{2010}\right)^{2009}.\)
So sánh giá trị của \(A=\left(19^{2009}+5^{2009}\right)^{2010}\&B=\left(19^{2010}+5^{2010}\right)^{2009}.\)
So sánh: \(\left(19^{2009}+5^{2009}\right)^{2010}\) và \(\left(19^{2010}+5^{2010}\right)^{2009}\).
So sánh: \(\left(19^{2009}+5^{2009}\right)^{2010}\) và \(\left(19^{2010}+5^{2010}\right)^{2009}\)
tim x y z
\(\left|x-2009\right|^{2009}+\left(y-2010\right)^{2010}+2011\left|z-2011\right|\le0\)
Tính: \(\left(-2\right)\left(\frac{-3}{2}\right)\left(\frac{-4}{3}\right)...\left(\frac{-2010}{2009}\right)\left(\frac{-2011}{2010}\right)\)
tính:
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
Chứng minh: Nếu \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2009}}{a_{2010}}\)thỉ\(\frac{a_1}{a_{2010}}=\left(\frac{a_1+a_2+...+a_{2009}}{a_2+a_3+...+a_{2010}}\right)^{2009}\)