\(\left(1-1+1-1\right)+1=1\)
Ai k mk mk k lại bất kể đúng hay sai !
( 1 - 1 + 1 + 1 ) + 1 = 2 + 1 =3
giúp tớ nhé
tớ bị trừ 513
cảm ơn nhé
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\left(1-1+1-1\right)+1=1\)
Ai k mk mk k lại bất kể đúng hay sai !
( 1 - 1 + 1 + 1 ) + 1 = 2 + 1 =3
giúp tớ nhé
tớ bị trừ 513
cảm ơn nhé
\(Q=\left(\frac{2}{2+2\sqrt{a}}+\frac{1}{2-2\sqrt{a}}-\frac{a^2+1}{1-a^2}\right)\left(1+\frac{1}{a}\right)\)
\(=\left(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+a\right)+\left(1+\sqrt{a}\right)\left(1+a\right)-2\left(a^2+1\right)}{2\left(1-a\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{1+a-\sqrt{a}-a\sqrt{a}+1+a+\sqrt{a}+a\sqrt{a}-2a^2-2}{2\left(1-a\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{2a-2a^2}{2\left(1-a\right)\left(1+a\right)}\right)\)
\(=\frac{a}{a}\)= 1
\(\left(1-\dfrac{1}{3}\right)x\left(1-\dfrac{1}{6}\right)x\left(1-\dfrac{1}{15}\right)x.....x\left(1-\dfrac{1}{1225}\right)xa=1\\\)
tìm a ghi chú(\(x\)) = nhân
e,\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}=4-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=4-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1}-\frac{1}{7}\right)=4-\frac{6}{7}=3\frac{1}{7}\)
\(\left(1+1+1\right)-\left(1+1+1\right)+1\)
Đã bảo là liên hợp là ra mà đ tin hả Zũ ? -_-
\(x^3+\sqrt{\left(x+1\right)^3}=9x+8\left(x\ge-1\right)\)
\(\Leftrightarrow\left(x^3+1\right)+\left(x+1\right)\sqrt{x+1}-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+\sqrt{x+1}-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(Tm\right)\\x^2-x+\sqrt{x+1}-8=0\left(1\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow\left(x^2-3x\right)+\left(2x-6\right)+\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2+\frac{1}{\sqrt{x+1}+2}\right)=0\)
Vì x > -1 nên dễ thấy cái ngoặc to > 0
Do đó x = 3
Vậy có 2 nghiệm -1 và 3 (nghiệm thứ 3 nào nữa nhỉ ? -,-'' )
Áp dụng bất đẳng thức bu nhi a , ta có
\(\left(a+b+c\right)\left[\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)
mà bạn dễ dàng chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) với abc=1
=>A(a+b+c)^2>=1
=>\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\left(ĐPCM\right)\)
đấu = xảy ra <=> a=b=c1
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(x^2-3x=0\)
\(\left(1+1\right)-\left(1+1\right)\)
\(B=\frac{x^2+x+1}{x^2+2x+1}\)
\(x^2+x+1=bx^2+2xb+b\)
\(x^2\left(1-b\right)+x\left(1-2b\right)+\left(1-b\right)\)
chọn b để pt lớn hơn hoặc = 0 " tức denta =0
\(\Delta=\left(1-2b\right)^2-4\left(1-b\right)^2=0\)
giải nhanh b=3/4 , thay b=3/4 vòa
\(x^2\left(1-\frac{3}{4}\right)+x\left(1-\frac{6}{4}\right)+\left(1-\frac{3}{4}\right)\ge0\)" vì denta=0"
dấu = xảy ra khi x= +- căn 3 " tự giải pt " chúa chỉ làm thế
\(\left(1+9\right)-\left(1+9\right)\)