Bài 1.1: Phương trình mặt cầu

SC

Lập phương trình mặt cầu (S), biết S đi qua C (2; -4; 3) và đi qua các hình chiếu của C lên
a) 3 trục toạ độ
b) 3 mặt phẳng toạ độ

HP
30 tháng 1 2022 lúc 20:40

Gọi I(a;b;c) và r lần lượt là tâm và bán kính mặt cầu (S).

Phương trình mặt cầu (S) có dạng: (x-a)2+(y-b)2+(z-c)2=r2.

a) (S) đi qua các điểm C(2;-4;3), (2;0;0), (0;-4;0) và (0;0;3).

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}\left(2-a\right)^2+\left(-4-b\right)^2+\left(3-c\right)^2=r^2\\\left(2-a\right)^2+b^2+c^2=r^2\\a^2+\left(-4-b\right)^2+c^2=r^2\\a^2+b^2+\left(3-c\right)^2=r^2\end{matrix}\right.\) \(\Rightarrow\) a=1, b=-2, c=3/2, r2=29/4.

Phương trình cần tìm là: (S): (x-1)2+(y+2)2+(z-3/2)2=29/4.

b) (S) đi qua các điểm C(2;-4;3), (2;-4;0), (2;0;3) và (0;-4;3).

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}\left(2-a\right)^2+\left(-4-b\right)^2+\left(3-c\right)^2=r^2\\\left(2-a\right)^2+\left(-4-b\right)^2+c^2=r^2\\a^2+\left(-4-b\right)^2+\left(3-c\right)^2=r^2\\\left(2-a\right)^2+b^2+\left(3-c\right)^2=r^2\end{matrix}\right.\) \(\Rightarrow\) a=1, b=-2, c=3/2, r2=29/4.

Phương trình cần tìm là: (S): (x-1)2+(y+2)2+(z-3/2)2=29/4.

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
CD
Xem chi tiết
KD
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TR
Xem chi tiết
HH
Xem chi tiết