Đáp án A
Gọi M là trung điểm của Bc suy ra A’M⊥BC. Gọi x là chiều cao của hình lăng trụ.
= 2 3
Đáp án A
Gọi M là trung điểm của Bc suy ra A’M⊥BC. Gọi x là chiều cao của hình lăng trụ.
= 2 3
Cho khối lăng trụ tam giác ABC.A’B’C’ có cạnh đáy bằng 2, diện tích tam giác A’BC bằng 3. Tính thể tích khối lăng trụ
A. 2 5 3
B. 2 5
C. 2
D. 3 2
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và A B ' ⊥ B C ' Tính thể tích V của khối lăng trụ đã cho
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có độ dài cạnh đáy bằng a và chiều cao bằng 2a. Tính thể tích V của khối cầu ngoại tiếp hình lăng trụ ABC.A’B’C’
A. 32 3 πa 3 27
B. 32 3 πa 3 9
C. 8 3 πa 3 27
D. 32 3 πa 3 81
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh 2a, hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60 0 . Tính thể tích khối lăng trụ ABC.A’B’C’
A . a 3 3 4
B . 4 a 3 3
C . 2 a 3 3
D . a 3 3 2
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, đỉnh A’ cách đều ba đỉnh A, B, C. Cạnh bên AA’ tạo với đáy một góc 45 0 . Thể tích khối lăng trụ ABC.A’B’C’ bằng bao nhiêu?
A . a 3 3 10
B . a 3 3 12
C . a 3 4
D . a 3 8
Cho khối lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a và điểm A’ cách đều ba điểm A, B, C. Cạnh bên AA’ tạo với mặt phẳng đáy một góc 60 0 . Tính thể tích khối lăng trụ ABC.A’B’C’
A . a 3 3 10
B . a 3 3 12
C . a 3 3 4
D . a 3 3 8
Đáy của lăng trụ đứng tam giác ABC. A’B’C’ là tam giác đều cạnh a = 4 biết diện tích tam giác A’B’C’bằng 8. Thể tích khối lăng trụ là:
A. 2 3
B. 4 3
C. 8 3
D. 16 3
Cho hình lăng trụ tam giác đều ABC.A’B’C’có cạnh đáy bằng 2a, khoảng cách từ A đến mặt phẳng (A’BC) bằng a 6 2 . Thể tích của khối lăng trụ đã cho bằng
Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác đều cạnh a. Mặt phẳng AB’C’ tạo với mặt đáy góc 60 0 . Tính theo a thể tích khối lăng trụ ABC.A’B’C’.