H24

undefined

Làm chi tiết giúp e với ạ

LH
30 tháng 6 2021 lúc 14:55

Với \(n>0;n\in N:\dfrac{1}{n\sqrt{n+4}+\left(n+4\right)\sqrt{n}}=\dfrac{1}{\sqrt{n\left(n+4\right)}\left(\sqrt{n}+\sqrt{n+4}\right)}=\dfrac{\sqrt{n+4}-\sqrt{n}}{\sqrt{n\left(n+4\right)}\left(n+4-n\right)}=\dfrac{1}{4}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+4}}\right)\) (1)

Áp dụng (1) ta được:

 \(\dfrac{1}{1\sqrt{5}+5\sqrt{1}}+\dfrac{1}{5\sqrt{9}+9\sqrt{5}}+...+\dfrac{1}{2013\sqrt{2017}+2017\sqrt{2013}}\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{5}}-\dfrac{1}{\sqrt{9}}+...+\dfrac{1}{\sqrt{2013}}-\dfrac{1}{\sqrt{2017}}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{\sqrt{2017}}\right)=\dfrac{\sqrt{2017}-1}{4\sqrt{2017}}=\dfrac{2017-\sqrt{2017}}{8068}\)

Ý A

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
AN
Xem chi tiết
GN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết